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In this work we develop a practical approach to optimization in comprehensive two dimensional liquid
chromatography (LC × LC) which incorporates the important under-sampling correction and is based on
the previously developed gradient implementation of the Poppe approach to optimizing peak capacity.
The Poppe method allows the determination of the column length, flow rate as well as initial and final
eluent compositions that maximize the peak capacity at a given gradient time. It was assumed that
gradient elution is applied in both dimensions and that various practical constraints are imposed on both
wo dimensional liquid chromatography
eak capacity
ptimization
nder-sampling effect
oppe approach

the initial and final mobile phase composition in the first dimension separation. It was convenient to
consider four different classes of solute sets differing in their retention properties. The major finding of this
study is that the under-sampling effect is very important and causes some unexpected results including
the important counter-intuitive observation that under certain conditions the optimum effective LC × LC
peak capacity is obtained when the first dimension is deliberately run under sub-optimal conditions.

at the
it inc
radient elution In addition, we found th
previous studies and that

. Introduction

Comprehensive two dimensional liquid chromatography
LC × LC) is, due to its advantages in achieving high resolving
ower, becoming more and more attractive especially to those
ho deal with complex samples [1–4]. This mainly results from

he “multiplicative advantage” which is a consequence of the
o-called product rule when LC × LC is done under ideal conditions
5]. LC × LC has gained enormous success in the field of proteomics,
ven though analysis times are typically several hours for each
ample [6–8]. Because of its high efficiency, fast gradient reverse
hase chromatography (RPC) has been incorporated into LC × LC
nd has shown promising applications in the analysis of various
amples with complex matrices such as maize extracts and urine
9,10]. Recent developments in LC × LC include a careful compari-
on of the separating power of LC × LC and one dimensional liquid
hromatography (1DLC) as a function of the overall analysis time
11], theoretical [12–14] and experimental studies of the optimal
econd dimension analysis time [15], and other important issues
ncluding the use of parallel second dimension columns [16,17]

nd the use of sophisticated second dimension gradients [18–20]
s well as protocols for the optimization of LC × LC [21].

Peak capacity is the most important metric for measuring the
eparating power of a LC × LC system. As mentioned above, under

∗ Corresponding author. Tel.: +1 612 624 0253; fax: +1 612 626 7541.
E-mail address: petecarr@umn.edu (P.W. Carr).

021-9673/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2010.10.096
optimum sampling rate in this study is rather slower than reported in
reases with longer first dimension gradient times.

© 2010 Elsevier B.V. All rights reserved.

ideal conditions the total peak capacity of LC × LC should be the
product of the peak capacities of the first dimension (1nc) and the
second dimension (2nc). However, to achieve “ideal” conditions, a
number of criteria must be strictly satisfied. First, the first dimen-
sion and second dimension separation must be totally uncorrelated
for the sample of interest [5,22]. Second, peaks from the samples
under investigation must cover the whole 2D separation space [23].
Third, the sampling of the first dimension effluent for the second
dimension separation must be fast enough to avoid resolution loss
due to “under-sampling” effects [24]. Murphy et al. suggested that
3–4 fractions should be sampled for each first dimension peak;
Davis et al. developed an equation (given below) to quantitatively
estimate the under-sampling effect as a function of first dimen-
sion average peak width and second dimension cycle time [25,26].
Li et al. and later Potts et al. in more detail examined the conse-
quences of the second dimension re-equilibration time and other
factors related to under-sampling and the effective peak capacity
[12,13]; Horie et al. suggested that the best first dimension mod-
ulation period (sampling time) would be 2.2–4 times the standard
deviation of the first dimension peak [27]. Considering the fact that
in general the above three criteria are never fully complied with
real LC × LC systems, Stoll et al. proposed that the effective 2D peak
capacity (n′

c,2D) should be calculated as per Eq. (1) [11]:
n′
c,2D = 1nc × 2nc × fcoverage × 1

〈ˇ〉 (1)

dx.doi.org/10.1016/j.chroma.2010.10.096
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
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ere, fcoverage is the coverage factor corresponding to the
eak distribution on the 2D separation space; and <ˇ> is the
avis–Stoll–Carr (D–S–C) under-sampling correction factor.

The importance of the peak capacity lies in the fact that the
otal number of observed peaks in a complex mixture as well as the
umber of observed single component peaks increase monotoni-
ally with an increase in peak capacity [28–31]. Thus, the general
bjective of optimization is usually to maximize the peak capac-
ty in a fixed analysis time or to achieve a desired peak capacity
n the shortest time. Various optimization approaches have been
eveloped to investigate the optimal separation conditions for both
DLC and LC × LC. Plumb et al. studied the influence of small porous
articles and temperature on chromatographic performance, and
hey concluded that high column temperature enables a peak
apacity of about 1000 in 1D gradient elution [32]. Wang et al.
eveloped an approach to optimizing peak capacity in 1D gradi-
nt chromatography, based on the Poppe method [33] for isocratic
hromatography, which enables the choice of appropriate columns,
article size, column length, and eluent velocity [34]. Interestingly,
ang et al. showed that conventional high performance liquid

hromatography (HPLC) instrumentation is able to give compara-
le peak capacities to those obtained in ultrahigh pressure liquid
hromatography (UHPLC), but at much lower pressures by using
long set of columns packed with large particles in long gradient

uns at elevated temperatures [35]. Furthermore, because of the
trong and complex interactions between all variables (e.g., flow
ate and mobile phase composition) during optimization, Wang
t al. recommended that one should first select the desired particle
ize, gradient time, and the highest achievable temperature, then
ptimize the flow rate and finally the mobile phase composition
36].

Optimization of LC × LC is a relatively new yet important
esearch topic. Obviously, in view of the fcoverage factor in Eq.
1) increasing orthogonality will raise the effective peak capac-
ty in a practical LC × LC system [37]; Jandera et al. explored this
pproach by choice of the proper columns and the careful opti-
ization of the mobile phase and gradient for each dimension

18–20]. Schoenmakers et al. proposed a protocol to establish the
ptimal conditions including column length and diameter, particle
ize, flow rate, and second dimension loop size [21]. They studied a
CxSEC (size exclusion chromatography) system. To compensate
or the under-sampling effect, they took the maximal retention
ime in the second dimension (2tR) to be equal to the standard
eviation of the corresponding peak in the first dimension (1�t).
uch a sampling rate is actually much too fast, approximately twice
hat recommended by Murphy et al. and three to four times faster
han suggested by Horie et al. and will lead to sub-optimal peak
apacities. Horvath et al. discussed optimization strategies for both
ffline and online LC × LC [14,38]. The major difference between
nline and offline LC × LC is that in online LC × LC the first dimen-
ion and the second dimension are directly coupled and separations
re carried out simultaneously in both dimensions. In offline work
liquots of the first dimension are collected, stored, and analyzed
ater thus the two dimensions are fully decoupled. Putting aside
ssues related to the coverage factor they suggested that, the effec-
ive peak capacity of online LC × LC would likely not exceed 10,000
ven if the LC × LC system were run under extraordinary condi-
ions.

In this work, we aim to develop a practical approach to optimiza-
ion in LC × LC based on both the previously developed gradient
mplementation of the Poppe method of optimizing peak capacity

n gradient LC and which also quantitatively accounts for the impor-
ant under-sampling correction. We postulated four distinct cases
ased on the retention properties of different classes of solutes, and
or each case we compared optimization results obtained by two
ifferent methods.
A 1218 (2011) 64–73 65

2. Theory and computational methods

Eq. (1) shows how to calculate the effective 2D peak capacity
of a LC × LC system. In this section, we introduce details of the
calculations and the corresponding theory.

2.1. First dimension peak capacity (1nc)

We assume that gradient elution is used in both dimensions, the
practical reasons for this choice in LC × LC have been made clear in
previous work [1,11]. The simplest working equation for the first
dimension peak capacity is [39]:

1nc =
1tg

1�
=

1tg

4 · 1�̄
(2)

where 1tg is the first dimension gradient time and 1� is the average
first dimension peak width. The peak capacity clearly varies with
the desired resolution. When unit resolution is required then 1�
is taken as 41�̄ leading to the right-hand form in Eq. (2). Another
important assumption in this study is that all peaks have simi-
lar peak widths, which was confirmed to be true in the following
calculations. Snyder later defined the “sample peak capacity” as
[39]:

1nc = 1 +
1tR,last − 1tR,first

1�
(3)

Here 1tR,first and 1tR,last are the retention times of the first and last
peak, respectively. For the current calculations based on practical
cases, we neglected the number 1 on the right hand side of Eq. (3),
which causes little impact in our final conclusions. Wang et al. thor-
oughly discussed these two different ways to calculate 1D gradient
peak capacity and showed that Eq. (3) is of more practical value in
LC optimization [36]. Thus in the current study, all calculations and
optimizations of the first dimension peak capacity were based on
Eq. (3) unless otherwise noted.

Various groups [40,41] have considered the dependence of peak
capacity on the properties of the gradient system including the
obvious factors of gradient time, plate count, initial and final mobile
phase composition and flow rate. These derivations start with Eq.
(2) and thus essentially assume that the first peak can be arranged
to elute at the column dead time (to), and the last to elute tg later, i.e.
at to + tg. One then imposes an equation relating the peak variance
to the column dead time, the elution factor at the column exit (ke),
the isocratic retention factor in the initial eluent of the gradient
(ko), and isocratic plate count (N). A somewhat controversial gra-
dient compression factor (G) may or may not be included [40,41].
Under conditions of zero system dwell time and assuming that lin-
ear solvent strength theory (LSST) of gradient elution is valid [42]
it is easily shown that [43]:

ke = ko

bko + 1
(4)

where b is the so-called gradient slope defined as:

b = S��
to

tg
(5)

Here S and �� represent the solute’s sensitivity to a change in elu-
ent composition and the difference in the final and initial volume
fractions of strong solvent in the eluent, respectively.

For a column of fixed length Neue [41] appears to be the first
to arrive at the approximate solution given below but more refined

forms have since appeared [43,44] although these too make a num-
ber of approximations:

nc ≈ S��
√

Ntg

G(S��to + tg)
≈ ˛1tg

˛2 + tg
(6)
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his equation is readily derived once it is assumed that bko � 1. It
s this final assumption that causes considerable trouble in that in
rder to use Eq. (2) we must assume that the first peak (see Eq. (3))
s unretained, i.e. ko is very small. Thus unless we can assume that
he gradient slope (b) is large we are imposing two contradictory
pproximations to derive Eq. (6). For low molecular weight solutes
uch as we are concerned within this paper b is almost always less
han unity.

.2. Retention times and peak width

We used the LSST of gradient elution [42] to predict retention
imes and the corresponding peak widths at a given temperature.
his method was described in detail in a previous paper [36]. Briefly
etention times were predicted as follows:

R = to + tD + to

b
ln

[
b
(

ko − tD

to

)
+ 1

]
(7)

nd peak widths were calculated using:

1/2 = 2.35Gto(1 + ke)√
N

(8)

ere tR is the peak retention time; tD is the system dwell time; ω1/2
s the half-height peak width.

.3. Second dimension peak capacity (2nc)

The Guiochon group [14] has used equations of the form of Eq.
6) in their work on optimization of online LC × LC. In prior exper-
mental work on very fast gradient elution [12] we attempted to
t measured peak capacities to Eq. (6) but found that Eq. (9) (with
′
1 = 44.01, ˛′

1 = 0.04 s−1 for our specific system) gave a slightly
etter fit.

nc = ˛′
1(1 − exp(−˛′

2 × 2tg)) (9)

ere 2tg is the second dimension gradient time. The data used were
xperimentally measured with a homologous series of alkylphe-
ones on the second dimension column under the practical
onditions used in this lab [12,13,36]. These practical conditions
nclude fixed column length, high flow rate, and most importantly
hat the final eluent composition (2�fin) was adjusted as tg was var-
ed to assure that the last peak eluted near the end of gradient. The
pproximate nature of Eq. (9), the need to adjust 2�final and most
ikely the complete neglect of all extra-column broadening are the
ikely causes of why Eq. (6) fails. Eq. (9) simply fits experimental
ata better than does Eq. (6).

In principle, the second dimension peak capacity can be further
mproved by also varying column length and flow rate. It makes a
ignificant difference to do this in the first dimension of the LC × LC
ystem but doing so is not as important in optimizing the second
imension because the column must be kept as short as possible to

imit the second dimension cycle time. In addition, a recent study
f maize extracts showed that the second dimension peak capacity
ould also be fit by the same mathematical form as Eq. (9) with
lightly different coefficients [15]. Since the chemical species used
n this study were similar to those used previously [12,13,15], we

ill continue to use Eq. (9) in the following calculations. We are
ertain that the differences between Eqs. (6) and (9) are trivial and
change in equation form would not alter the conclusions of this
aper.
.4. Under-sampling effect

As mentioned above, the under-sampling effect has been stud-
ed by Murphy et al. [24], and later by Davis et al. [25,26], Tanaka
t al. [27], Horvath et al. [14], and Potts et al. [13]. In this study, we,
A 1218 (2011) 64–73

as did the Guiochon group, base our results on the D–S–C equation
for the quantitative estimation of the under-sampling effect:

〈ˇ〉 =

√
1 + 3.35

(
2tc
1�

)2

(10)

where 2tc is the second dimension cycle time. It is equal to the
first dimension sampling time, and in our experiment settings also
equal to the second dimension gradient time (2tg) plus the second
dimension re-equilibration time (2teq which was held constant at
3 s throughout the study):

2tc = 2tg + 2teq (11)

2.5. Effective 2D peak capacity (n′
c,2D)

Although of vital importance, the effect of fcoverage is not dis-
cussed in this paper and we assumed that it is a constant (equal
to 1 in this study) in all the calculations. If different fixed val-
ues of fcoverage were used, they would not affect the conclusions
of this study except for the comparison of the peak capacities of
1DLC and LC × LC; however, using experimental fcoverage values Stoll
et al. showed that the effective peak capacity of practical LC × LC
will exceed that of optimized 1DLC in about 10 min [11], which is
in good agreement with the results of this study. By substituting
Eqs. (3), (9)–(11) into Eq. (1), the effective 2D peak capacity can be
calculated as follows:

n′
c,2D =

1tR,last − 1tR,first
1�

× 1√
1 + 3.35((2tg + 3)/1�)2

× 44.05 × (1 − exp(−0.04 × 2tg)) (12)

A little reorganization of the right side of Eq. (12) leads to a clearer
expression which is beneficial in analyzing the effects of different
variables on the effective 2D peak capacity (discussed later):

n′
c,2D =

1tR,last−1tR,first√
(1�)2 + 3.35(2tg + 3)2

× 44.05 × (1 − exp(−0.04 × 2tg))

(13)

2.6. Optimizer and optimization protocol

One of the most important aspects of this paper is the proto-
col used to optimize gradient elution. We followed the approach
previously described [21,34] and used by us [36]. Basically this is a
variant of the procedure devised by Poppe for the optimization of
isocratic elution LC [33]. However, instead of optimizing the plate
count at a given column dead time the sample peak capacity (see
Eq. (3)) of Snyder [39] is maximized at the desired gradient time.
The optimizer used is the Solver function of Microsoft Excel (2003).
We must input various system (temperature, maximum pressure,
and viscosity), column (particle size, column diameter, reduced van
Deemter coefficients) and solute parameters (diffusion coefficients,
solvent sensitivity (S) and retention factors in pure water (kw)).
The first dimension peak capacity (Eq. (3)) is then optimized by
varying column length, flow rate, 1ϕo, and 1ϕfin. The effective 2D
peak capacity optimization (Eq. (12)) additionally requires that 2tg

be optimized. All parameters are subject to various physical con-
straints (see Section 2.7). Fig. 1 outlines two distinct optimization

protocols: method 1 (two step optimization) and method 2 (one
step optimization):

a. In method 1 (two step optimization) the first step is to maxi-
mize 1nc with regard to the variables without concerning one’s



H. Gu et al. / J. Chromatogr. A 1218 (2011) 64–73 67

Optimizer varies 1F, 1L, 
1φ o, 1φ fin

Input 1tg

Maximum 1nc

No

Optimizer varies 2tg

Maximum n'
c,2D

Yes
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ig. 1. Flow diagrams for method 1 (two step optimization) and method 2 (one st
ystem and then the effective LC × LC peak capacity of this system is further maxim
ame as those found in method 1. See Section 2 for additional details. 1nc is comput

self with the under-sampling correction. After selecting a gradi-
ent time the maximum value of 1nc is obtained by varying 1F,
1L, 1ϕo, and 1ϕfin. In the second step one then optimizes the sec-
ond dimension by varying 2tg taking into consideration both the
under-sampling process and the effect of 2tg on 2nc.

. In method 2 (one step optimization) one from the outset works
in 5 dimensional space and optimizes the final effective LC × LC
peak capacity in what amounts to one step. The effective 2D peak
capacity (n′

c,2D) in this method is the global maximum obtained

by simultaneously varying five variables (1F, 1L, 1ϕo, 1ϕfin, and
2tg).
.7. Assumptions and constraints

We summarize here the chief assumptions and constraints in
he optimization calculations keeping in mind that the purpose of
he calculations is to simulate realistic experiment results, so some

able 1
efinition of the various sample mixturesa.

Case Mixture sampleb Mixture type

1e A and B Ideally retained
2f C Weakly retained
3g D Well retained
4h Too strongly retained

a These are the conditions for optimizing the first dimension.
b These are the mixture designators used in the text and calculation. Both mixtures A
ixture A elutes at a time slightly larger than 1to whereas the second solute in mixture B

omponent is missing and D is the same as B but again the un-retained component is mis
c It is assumed that the initial eluent composition is pure water. This is just a convenie
d It is assumed that there will be an upper limit of 1ϕfin so as to avoid problems related
e In case 1 it is assumed that the solute set has a species which elutes at 1to even when
f In case 2 we assume the presence of a very weakly retained solute which elutes close
g In case 3 we assume that the least retained solute elutes at a time greater than 1to giv
h In case 4 we assume that the solute set contains a solute which is so strongly retained
i 1ϕmax, the maximum first dimension eluent composition, is 0.8 in this study.
imization) optimization. In method 1, the same conditions are used in the LC × LC
y varying 2tg . In method 2, the optimized first dimension conditions may not be the
m Eq. (3) and n′

c,2D
is from Eq. (12) or (13).

practical assumptions must be imposed, e.g., the calculation of the
second dimension peak capacity and under-sampling factor.

(1) Gradient elution is used in both dimensions.
(2) All peaks have similar peak widths.
(3) fcoverage is unity in all the calculations regardless of the gradi-

ent times.
(4) The first dimension column length must be larger than 3 cm.
(5) The temperature is held constant.
(6) The first dimension particle size and column diameter are

fixed.
(7) The system maximum pressure is 400 bar.
(8) The first dimension flow rate must be less than 5 mL/min.

(9) Extra column peak broadening and extra column pressure

drops are neglected.
(10) The first dimension initial eluent is fixed as pure water, and

the first dimension final mobile phase is between 20% and
80% ACN. This practical constraint was imposed because of the

1tR,first
1tR,last

1ϕo
c 1ϕfin

d

=1to =1to + 1tg =0 ≤1ϕmax
i

>∼1to =1to + 1tg =0 ≤1ϕmax
i

>1to =1to + 1tg =0 ≤1ϕmax
i

≥1to >1to + 1tg =0 ≤1ϕmax
i

and B have a solute which elutes at 1to even when 1ϕo = 0. The second solute in
elutes substantially later than 1to . Mixture C is the same as A but the un-retained

sing.
nce for this work; any value could be substituted.
to focusing the solutes in the second dimension. Any value would do.
1ϕo = 0 as well as a species that elutes at 1to + 1tg even if 1ϕfin < 0.8.
to or slightly later than 1to .
en 1ϕo = 0.0.
that it elutes later than 1to + 1tg at 1ϕfin above the allowed limit.
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Table 2
Summary of solute parametersa.

Mixture Solute parameter

Dm
b Se ln(kw)h

Ave.c Max.d Ave.f Max.g Ave.i Max.j

A 0.98 1.22 6.79 13.15 2.37 4.59
B 1.15 1.42 6.35 8.93 5.38 8.82
C 0.98 1.22 6.79 13.15 2.37 4.59
D 1.17 1.42 6.35 8.93 5.38 8.82

a System parameters and column parameters are from previous studies [11,12,36]. The temperature is 40 ◦C; the maximum pressure is 400 bar; the maximum eluent
viscosity is 0.69 cP; the column particle size is 3.5 �m; the column internal diameter is 2.1 mm; the reduced van Deemter coefficients are 1.04 (A), 15.98 (B), and 0.033 (C).

b Diffusion coefficient (×10−5 cm2/s) of the solutes.
c Average diffusion coefficient of the solutes.
d Maximum diffusion coefficient of the solutes.
e S of the solutes.
f Average S of the solutes. It should be noted that for mixtures A and B the solute eluting at to was not included.
g Maximum S of the solutes. It should be noted that for mixtures A and B the solute eluting at to was not included.
h
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to. These four curves differ only due to differences in the solute
sets particularly due to differences in S and ln kw. However, the
averages and ranges in diffusion coefficients are impacted by the
solute set (see Table 2) and consequently there is a minor effect
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Fig. 2. 1DLC gradient peak capacity gradient Poppe plots for the four mixtures
(see Table 1) on the column. Conditions (see Table 2 for details): Pmax, 400 bar; T,
40 ◦C; �max, 0.69 cP; maximum Dm , 1.42 × 10−5 cm2/s. Coefficients of the reduced van
Average ln(kw) of the solutes.
i Average ln(kw) of the solutes. It should be noted that for mixtures A and B the s
j Maximum ln(kw) of the solutes. It should be noted that for mixtures A and B the

need to match the mobile phase strength in the two dimen-
sions to suppress peak broadening by focusing the sample on
the second dimension column.

.8. System, column, and solute parameters

Besides the assumptions and constraints imposed in the calcu-
ations, another issue that should be emphasized is that various
roperties (mainly S and kw) of different solutes were measured,
ut we classified all solute sets into four categories according to
heir LC retention characteristics as shown in Table 1 (see detailed
iscussion in the following section). As mentioned in Section 2.6,
e need to input system, column, and solute parameters into

he spreadsheet for the Poppe optimization calculations. Table 2
ummarizes these parameters which were obtained from previ-
us experimental results; refer to [11,12,36] for detailed values and
xperimental conditions. As shown in Table 2, the maximum pres-
ure was assumed to be 400 bar and the fixed temperature was set
t 40 ◦C. The maximum mobile phase viscosity (�max) was 0.69 cP
hen the concentration of ACN in the eluent was 19%. The maxi-
um diffusion coefficient of all the solutes was 1.42 × 10−5 cm2/s,

stimated using the Wilke–Chang equation [45]. To allow for a fair
omparison in this study, we used the same A, B, C terms, obtained
rom a Zorbax SB-C18 column, in the van Deemter equation for the
our mixtures in all cases.

. Results and discussion

During preliminary attempts to develop a very general approach
o the problem of optimizing dual gradient LC × LC we realized that
better approach was to simplify the general problem. This led

s to postulate four distinct smaller problems (see Table 1) based
n the retention properties of different classes of solutes. Here we
how the results for these four situations.

.1. The Poppe approach to 1DLC optimization (the first step in
ethod 1)

Table 1 defines the four classes of solute mixtures according

o their retention properties on the first dimension column; Fig. 2
hows the gradient Poppe plots of the optimized first dimension
radient peak capacity (the first step in method 1) for the four
ixtures (see Table 1) on the packed bed column. It is worthwhile

oting that the curves in Fig. 2 represent the maximum 1DLC peak
eluting at to was not included.
e eluting at to was not included.

capacity at different gradient times from each individual mixture
under the experimental conditions and constraints illustrated in
Section 2. This gradient Poppe plot clearly resembles the Poppe
plots for isocratic elution [34]. As pointed out previously [34], mov-
ing toward the right along the curves requires a longer column, a
lower flow rate, and a lower 1ϕfin. The asymptotes for all mixtures at
high peak capacity tend to be vertical indicating that there is a max-
imum achievable peak capacity. Higher peak capacity can always
be obtained in gradient 1DLC elution in a longer run, although
the gain per unit time becomes very small. The optimized 1DLC
peak capacities of mixture A and B have a smaller difference in
high speed region than that in the high peak capacity region; the
same trend was observed for mixture C and D. Mixture A and B
have higher peak capacities than mixture C and D, respectively,
due to the fact that they have a solute which always elutes at
Deemter equation (A, 1.04; B, 15.98; C, 0.033) were measured on a 50 mm × 2.1 mm
3.5 �m Zorbax SB-C18 column using heptanophenone in 40% acetonitrile (v/v) at
40 ◦C (k = 20). Mixture A dark blue line (dash-dot); mixture B pink line (long dashed);
mixture C orange line (short dashed); mixture D blue line (dot). See Table 1 for defi-
nition of solute mixtures. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of the article.)
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Table 3
Case 1: results for optimization of mixtures A and B.

1tg
a 1Lb 1Fb 1ϕo

b 1ϕfin
b 1nc

c �(1t)d �(1t)/1tg
e 1�f 2tg

g 21�/2tc
h ˇi 1n′

c
j 2nc

k n′
c,2D

l

Method 1 and method 2 optimization of mixture A1

5 19.7 0.59 0.00 0.46 123 5.0 1.00 0.041 11.54 0.34 10.9 11.2 16 183
12 25.0 0.47 0.00 0.40 154 12.0 1.00 0.078 12.06 0.62 6.0 25.8 17 434
24 29.0 0.40 0.00 0.33 181 24.0 1.00 0.133 13.18 0.99 3.8 47.0 18 848
49 33.4 0.35 0.00 0.25 210 49.0 1.00 0.234 15.69 1.50 2.6 79.6 21 1634

Method 1 and method 2 optimization of mixture B1

5 9.3 1.26 0.00 0.80 142 5.0 1.00 0.035 11.48 0.29 12.6 11.3 16 183
12 14.3 0.82 0.00 0.80 189 12.0 1.00 0.064 11.82 0.52 7.2 26.3 17 436
24 20.3 0.58 0.00 0.80 228 24.0 1.00 0.105 12.57 0.81 4.6 49.4 17 859
49 29.0 0.40 0.00 0.80 268 49.0 1.00 0.184 14.40 1.27 3.1 87.3 19 1684

a Input first dimension gradient time (min).
b Optimum first dimension column length (cm), flow rate (mL/min), initial and final eluent compositions.
c Resulting first dimension peak capacity computed by optimizing peak capacity from Eq. (3) (method 1 optimization) or Eq. (12) (method 2 optimization).
d Difference in the retention times (min) of the first and last peak (�(1t) = 1tR,last − 1tR,first) under the gradient conditions as per footnote b.
e Ratio of quantity footnoted as per d to the gradient time.
f The first dimension average peak width (min) under the optimized conditions.
g The optimized second dimension gradient time (s; see i).
h 2tc is the second dimension cycle time (see Eq. (11))
i The under-sampling factor based on Eq. (10), 1� and 2tg (see f and g).
j The effective first dimension peak capacity (=1nc/ˇ see c and i).
k The optimized second dimension peak capacity computed from Eq. (9) with 2tg as per quantity footnoted as g.
l Optimized effective LC × LC peak capacity computed from Eq. (12).

1 Both mixture A and mixture B have a solute which elutes at 1to even when 1ϕo = 0. Except that solute, mixture A has a very weakly retained solute which elutes close to
or slightly later than 1to; mixture B has the least retained solute which elutes at a time greater than 1to given 1ϕo = 0.0.

Table 4
Case 2: results for optimization of mixture Ca.

1tg
1L 1F 1ϕo

1ϕfin
1nc �(1t) �(1t)/1tg

1� 2tg 21�/2tc ˇ 1n′
c

2nc n′
c,2D

Method 1 optimization of mixture Cb

5 14.4 0.81 0.00 0.36 101 4.5 0.90 0.045 11.58 0.37 10.0 10.1 16 164
12 19.1 0.61 0.00 0.31 131 11.1 0.93 0.085 12.18 0.67 5.5 23.6 17 401
24 23.5 0.50 0.00 0.26 157 22.6 0.94 0.144 13.44 1.05 3.6 43.4 18 796
49 29.1 0.40 0.00 0.20 187 46.9 0.96 0.252 16.16 1.58 2.5 73.8 21 1547

Method 2 optimization of mixture Cb

5 9.2 1.27 0.00 0.20 94 4.8 0.96 0.051 11.65 0.42 8.8 10.7 16 175
12 14.3 0.82 0.00 0.20 127 11.5 0.96 0.091 12.28 0.71 5.2 24.2 17 414
24 20.2 0.58 0.00 0.20 156 23.0 0.96 0.148 13.52 1.08 3.6 43.8 18 806

an 1to

o
t
o
s

3

e
r

T
C

49 28.9 0.40 0.00 0.20 187 47.0 0.96

a The meanings of symbols in this table are the same as those in Table 3.
b Mixture C has the least retained solute which elutes close to or slightly later th

n average peak width. The major difference is due to the reten-
ion time window. Inspection of Tables 3–5 will show that the
ptimized column length, flow rate, and 1ϕfin all vary with solute
et.
.2. Case 1: ideally retained solute set

Case 1 is the simplest; in this instance there is a solute which
lutes virtually at the column dead time as well as a strongly
etained solute which, below some acceptable maximum final elu-

able 5
ase 3: results for optimization of mixture Da.

1tg
1L 1F 1ϕo

1ϕfin
1nc �(1t) �(1t)/1tg

Method 1 optimization of mixture Db

5 9.3 1.26 0.00 0.80 101 4.0 0.80
12 14.3 0.82 0.00 0.80 135 9.6 0.80
24 20.3 0.58 0.00 0.80 163 19.2 0.80
49 25.2 0.46 0.00 0.76 192 40.9 0.83

Method 2 optimization of mixture Db

5 3.0 3.89 0.00 0.50 53 4.9 0.98
12 4.8 2.43 0.00 0.51 81 11.6 0.97
24 7.9 1.49 0.00 0.55 118 23.0 0.96
49 12.7 0.92 0.00 0.58 163 46.5 0.95

a The meanings of symbols in this table are the same as those in Table 3.
b Mixture D has the least retained solute which elutes at a time greater than 1to given 1
0.252 16.16 1.58 2.5 73.8 21 1548

given 1ϕo = 0.0.

ent composition, elutes at or very near the gradient time plus the
dead time. We further assume that all peaks have similar peak
widths so that the peak capacity can realistically be computed from
the peak width averaged over all peaks as in Eq. (3). Due to the
properties of the least and most retained solutes the time window

will be equal to the first dimension gradient time (see Table 1).
Consequently Eq. (13) makes it obvious that the first dimension
experimental conditions can only influence the effective 2D peak
capacity through the average peak width, and that the conditions of
the second dimension influence the effective peak capacity through

1� 2tg 21�/2tc ˇ 1n′
c

2nc n′
c,2D

0.040 11.52 0.33 11.3 9.0 16 146
0.071 11.94 0.57 6.5 20.8 17 348
0.118 12.84 0.89 4.2 38.5 18 682
0.213 15.16 1.41 2.8 68.9 20 1381

0.091 12.29 0.71 5.2 10.2 17 175
0.144 13.44 1.05 3.6 22.3 18 408
0.195 14.70 1.32 2.9 40.1 20 786
0.286 17.02 1.71 2.4 69.0 22 1500

ϕo = 0.0.
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he second dimension gradient time (2tg). Clearly inspection of Eq.
13) shows that at any 2tg value, the maximum effective peak capac-
ty must occur at the values of 1F, 1L, 1ϕo, and 1ϕfin which minimize
�. Meanwhile, it is important to notice that while in principle the
eparation window (1tR,last − 1tR,first) is a variable in case 1 the solute
et is deliberately idealized such that the experimental conditions
1F, 1L, 1ϕo, and 1ϕfin) allow the separation window to be equal to
tg. That is, the experimental variables in the gradient Poppe opti-
ization are such that the first and last peaks are able to exactly

bey the desired time constraints.
This situation differs fundamentally from that in which the peak

apacity is optimized according to the definition provided by Eq.
2). If Eq. (2) and not Eq. (3) were used for computing the max-
mal peak capacity the optimization would follow a trajectory in

hich the experimental variables (1F, 1L, 1ϕo, and 1ϕfin) disregard
he first and last retention times since they do not appear in Eq. (2)
nd thus these variables must act to merely minimize the average
eak width. As shown in previous experimental work this for-
ally leads to very high peak capacities but it does not give very

ood separations as the “optimized” conditions force the solutes
o elute rather quickly so as to minimize the average peak widths
36].

Table 3 compares the conditions which optimize the LC × LC sys-
em by method 1 and method 2 for four different first dimension
radient times using mixtures A and B both of which contain a
ery weakly retained species that always elutes at the dead time.
verall the solutes in mixture A are more weakly retained than

hose in B; mixture A required 1ϕfin less than 0.5 to elute the
ast peak while mixture B required 1ϕfin of 0.8 which is the upper
imit imposed in these calculations. As predicted above, we found
hat the conditions which optimized the first dimension also opti-

ized the full two dimensional separation. This was true for both
ixture types for all four gradient times. This means that if one

ptimizes only the first dimension the same conditions can be
sed for the full LC × LC system. Clearly this would greatly sim-
lify LC × LC method development for solutes falling in this class.

n Table 3, we see that the peaks occupy the full time window
ince 1tR,last − 1tR,first is exactly 1tg. To optimize a LC × LC system
n case 1, the first dimension should be adjusted to provide the

inimal 1� while making sure that the sample elutes so that
he whole retention time window is occupied; this will maximize
he peak capacity of the first dimension. Once the first dimen-
ion conditions that maximize the first dimension peak capacity
ave been found then the effective 2D peak capacity (n′

c,2D) is only
ependent on the second dimension gradient time. Fig. 3a and b
emonstrates the relationship between n′

c,2D and 2tg at four differ-

nt values of 1tg in case 1. There exists an optimal 2tg in both Fig. 3a
nd b which produces the maximum n′

c,2D at any pre-selected 1tg

or either of these two mixtures. All of the plots in Fig. 3a–f are
ather similar. They differ principally in the values of the second
imension gradient times at which the optimum effective LC × LC
eak capacity appears and the maximum values of the effective
C × LC peak capacity. These two quantities for all the curves in
ig. 3 are given in Tables 3–5 and appear in columns denoted 2tg

nd n′
c,2D. For each mixture, this optimal 2tg increased (∼11–∼16 s)

ith 1tg which agrees well with our recent experimental results
15].

Furthermore, we noticed (see Table 3) that at each 1tg although
he first dimension peak capacities are rather different for these
wo mixtures in contradistinction the optimized effective LC × LC
eak capacities are very similar. For example, at 12 min (1t ), 1n
g c

rom mixture A is 154 and 1nc from the second mixture is 189
ith a difference of about 23%, while n′

c,2D from these mixtures
re 434 and 436, respectively, for all practical purposes a negligible
ifference. This surprising result is caused by the under-sampling
A 1218 (2011) 64–73

effect; the higher is 1nc, the smaller is 1� which induces a more
severe under-sampling problem. The compromise results in sim-
ilar values of effective first dimension peak capacity (1n′

c) which
are 25.8 and 26.3, respectively. Based on the observation that in
both cases the optimal 2tg are similar, it is evident that the effec-
tive 2D peak capacities from these two mixtures will be similar.
This is a consequence of what was predicted and discussed at
length by Li et al. and Potts et al. that when the peak capacity of
the first dimension exceeds a certain value the effective 2D peak
capacity becomes independent of the first dimension peak capacity
[12,13].

Another important result in Table 3 is that the effective peak
capacity of LC × LC will exceed that of 1DLC from about 5 min
onwards; this theoretically based conclusion is in good agree-
ment with Stoll’s experimentally based conclusion albeit based on
a single mixture (a maize seed extract) and thus generalizes his
statement that the effective peak capacity of LC × LC will exceed
that of one dimensional LC in only about 5–10 min [11]. However,
it should be noted that the fractional spatial coverage was taken
as unity in this theoretical comparison. Fig. 4a and b compares
1nc based on the optimized first dimension in method 1 and n′

c,2D
for the optimized LC × LC system in method 2 as a function of the
first dimension gradient time in case 1. LC × LC rapidly overtakes
1DLC and the peak capacity advantage grows as 1tg increases. The
peak capacity of the first dimension has a strong negative curva-
ture vs. the first dimension gradient time (see Fig. 4a and b), while
n′

c,2D is only slightly curved but ultimately becomes quite linear

with 1tg when under-sampling is not severe [13]. The chief rea-
son for the strong negative curvature in these plots of 1nc is that
in 1DLC 1� also increases almost linearly with 1tg. However, in
LC × LC the increase in 1� alleviates the loss in resolution due to
under-sampling which brings about the continuing increase of the
effective 2D peak capacity with 1tg. Clearly, the under-sampling
effect plays a profound role in LC × LC; it needs careful and quantita-
tive consideration especially when attempts are made to optimize
LC × LC.

3.3. Case 2: weakly retained solute set

In case 2, mixture C, which is the same as mixture A but the
un-retained solute is deleted (see Table 1), was used. As shown in
Table 1, mixture C has a solute that elutes somewhat later than 1to

as well as a solute that appears at 1to + 1tg. Compared to case 1, the
value of 1tR,last − 1tR,first actually changes although it is still close
to 1tg and covers most of the time window (>90%, see Table 4).
Solutes in mixture C are weakly retained as compared to mixture D
(see Table 1), e.g., a 1ϕfin of only 0.36 is needed to elute the last peak
in the method 1 optimization (1tg = 5 min). In the method 2, 1ϕfin
was even smaller and hit the constraint that 1ϕfin had to exceed
1ϕo by at least 0.2 to assure that one is doing a gradient and not an
isocratic separation.

Since in case 2 1tR,last − 1tR,first is still close to 1tg, the results
should be rather similar to those in case 1. Table 4 shows the
optimized conditions in method 1 and method 2 optimization at
different 1tg values. In this case, optimal conditions in the two dif-
ferent optimization approaches were reasonably similar although
subtle differences were indeed observed. Fig. 3c and d show the
effective 2D peak capacities in the two approaches as a func-
tion of 2tg at different values of 1tg in case 2. The same general
trends were observed as in case 1 (Fig. 3a and b) that is there
is an optimum 2t which increases with 1t . Fig. 4c compares
g g

the maximal 1nc from method 1 optimization and the maximal
n′

c,2D from method 2 optimization in case 2. LC × LC has better
resolving power than does 1DLC starting from 5 min, and this
advantage becomes greater as 1tg increases; this results mainly
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Fig. 3. Effective LC × LC peak capacity vs. second dimension gradient time at four first dimension gradient times. (a) Mixture A in case 1 by either method 1 or method 2
o ; (c) m
o 3 by
o and m
a egend

f
t

3

t
D
c
C
a

ptimization; (b) mixture B in case 1 by either method 1 or method 2 optimization
ptimization; (e) mixture D in case 3 by method 1 optimization; (f) mixture D in case
range triangles: 1tg = 24 min; blue circles: 1tg = 49 min. See the definitions of cases
re given in Tables 3–5. (For interpretation of the references to color in this figure l

rom a decrease in the magnitude of the under-sampling correc-
ion.

.4. Case 3: strongly retained solute set

Mixture D of case 3 is the same as mixture B in case 1 but the

otally un-retained solute is deleted. The last peak from mixture

still elutes at 1to + 1tg; however, the first peak elutes at a time
onsiderably longer than 1to (see Table 1). In comparison to mixture
of case 2 the solutes in mixture D are relatively strongly retained

s a high 1ϕfin is required to elute them (see Table 5).
ixture C in case 2 by method 1 optimization; (d) mixture C in case 2 by method 2
method 2 optimization. Dark blue diamonds: 1tg = 5 min; pink squares: 1tg = 12 min;
ixtures in Table 1; optimum peak capacities and second dimension gradient times
, the reader is referred to the web version of the article.)

The most striking result in Table 5 is that the optimum condi-
tions for method 1 and method 2 are quite different. Furthermore
the first dimension must be run at sub-optimal conditions to obtain
the maximum n′

c,2D. For example, at 1tg equal to 5 min, the value of
1nc that produces the highest value of n′

c,2D differs by almost two
fold (101–53) between the two types of optimization. This counter-
intuitive observation can only be rationalized by considering the

under-sampling effect. The solutes in mixture D covered only 80%
of the time window in method 1 optimization (1tg = 5 min), and
this coverage changed to 98% thereby increasing 1tR,last − 1tR,first by
the appropriate adjustment of 1ϕfin, 1F, and 1L in method 2. How-
ever, 1� increased about 2.3 fold which made 1nc almost two times
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Fig. 4. Peak capacity from the optimized first dimension and the effective LC × LC peak capacity from the optimized LC × LC system (method 2 optimization) vs first dimension
gradient time. (a) Mixture A in case 1; (b) mixture B in case 1; (c) mixture C in case 2; (d) mixture D in case 3. Dark blue diamonds: the peak capacity from the optimized first
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imension; pink squares: the effective LC × LC peak capacity from the optimized LC
he references to color in this figure legend, the reader is referred to the web versio

maller in method 2 (see Eq. (3)). Fortunately, ˇ decreases with
� (see Eq. (10)), and interestingly the compromise between all of
he above mentioned factors results in an increased value of 1n′

c .
he best 2tg in method 2 is larger than in method 1, further con-
ributing to the increased n′

c,2D. This increase ranged from 19.9% to

.6% as 1tg increased from 5 min to 49 min probably because longer
radients are less sensitive to the under-sampling effect. Thus, the
nder-sampling correction makes it possible under certain circum-
tances that one can sacrifice some first dimension peak capacity
nd thereby obtain a higher effective LC × LC peak capacity which
s the real goal of the optimization process.

Case 3 also shares some common features with cases 1 and 2. In
ig. 3e and f, the optimal 2tg varied from 11 s to 18 s and increased
ith 1tg. Fig. 4d once again shows the nearly linear increase of n′

c,2D

ith 1tg while 1nc increased much slowly (explained in case 2).

.5. Case 4: too strongly retained solute set

It is possible that some mixtures might contain extremely well
etained solutes such that some components elute after 1to + 1tg

ven at the maximum allowable value of �fin. We did not study
his case as in such instances it would be best to choose a less
etentive stationary phase, e.g., by using the same type of station-
ry phase on a lower surface area material or to use a stronger

ype of mobile phase e.g., THF or acetone. Recent work in this lab
hows that LC × LC allows many more types of eluents to be used
n the first dimension in RP × RP including eluents which absorb
ery strongly in the ultra-violet or have relatively high viscosities
46].
system. See the definitions of cases and mixtures in Table 1. (For interpretation of
e article.)

3.6. Ratio of first dimension peak width (8�) and sampling time

In Tables 3–5, we give the ratio of the average 8� peak width
of the first dimension (21�) to the second dimension cycle time
(2tg). For example, the ratio is 0.34 for mixture A when the 1tg is
5 min, and this value monotonically increases to 1.50 when the
1tg is 49 min. It is important to note that the optimum sampling
rate differs from previous work in two regards. First, it is rather
slower than reported in previous studies. As mentioned earlier,
Murphy et al. recommended that along each 8� peak width (first
dimension) there should be at least four samples taken when sam-
pling is out of phase to minimize resolution loss [24]. Horie et al.
showed that the sampling time is optimally 2–3.6 times per each
8� interval, i.e. somewhat slower than recommended by Murphy
et al. [24], when the second dimension is based on isocratic chro-
matography [27]. Recently, Potts et al. obtained comparable but
larger ratio values because the first dimension was not fully opti-
mized [13]. The major reason for the slower optimum sampling
rates in this study is that the second dimension peak capacity is
from Eq. (9) which is based on our experimental data [12]. The
initial rapid increase of Eq. (9) makes it possible to tolerate resolu-
tion loss to a certain degree when using a relatively long sampling
time. We also point out the method of Horie [27] overestimates the
effect of undersampling compared to the method of Davis et al. [25]
by about 30%. This will increase the optimum sampling rate. We

also point out that the calculations in this study are in good agree-
ment with our experimental data [15]. Second, our results differ
from previous studies in that a clear trend is evident. The opti-
mum sampling rate increases with longer first dimension gradient
times.
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. Conclusions

In this study, we examined LC × LC optimization with a variety
f low molecular weight solutes which had widely different reten-
ion properties. We discussed the optimized LC × LC conditions
n four cases and compared results using two different opti-

ization methods. Two different methods of optimization were
onsidered. Mathematically method 1 (the two-step optimiza-
ion) is more robust than method 2 (the one-step optimization),
ince each step in method 1 has fewer parameters to optimize
nd thus will be less prone to find false optima. However, this
tudy shows that under certain conditions method 2 can gener-
te a higher peak capacity than method 1; this has important
ignificance in LC × LC optimization. The main conclusions are as
ollows:

. The under-sampling of the first dimension must be quantita-
tively accounted for when seeking the instrumental conditions
(column length, flow rate, eluent composition) that establish the
optimum effective LC × LC peak capacity.

. The optimum conditions depend strongly on the retention char-
acteristics of the solute mixture. Four cases were considered
ranging from weakly retained solutes to very strongly retained
solutes.

. In case 3 where the solutes range from the weakly retained
to those which are strongly retained and thus require a
rather strong final eluent composition to elute them, we found
that counter-intuitively the first dimension should be run
under conditions wherein a less than optimum first dimen-
sion peak capacity is used. This results from a compromise
between the width of the separation space (tR,last − tR,first), the
peak width and the impact of under-sampling on the first
dimension.

. For the weakly retained solutes (case 2) a rather different,
more intuitive, result was obtained. The LC × LC system is opti-
mized in method 2 under approximately the same conditions as
those from method 1. This means that to achieve the maximum
effective LC × LC peak capacity we should first approximately
optimize the first dimension and then the second dimension
taking the under-sampling effect into account.

. In case 1, a hypothetical situation in which the first solute
always elutes at the dead time and the last solute elutes at this
time plus the gradient time, the LC × LC system is optimized
in method 2 under exactly the same conditions as those from
method 1.

. The optimum sampling rate in this study differs from previous
work in two regards. First, it is rather slower than reported in

previous studies as the second dimension peak capacity is based
on our experimental data. Second, the optimum sampling rate
increases with longer first dimension gradient times. The cal-
culations in this study are in good agreement with our recent
experimental study [15].
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